An Anaerobic-Type α-Ketoglutarate Ferredoxin Oxidoreductase Completes the Oxidative Tricarboxylic Acid Cycle of Mycobacterium tuberculosis

نویسندگان

  • Anthony D. Baughn
  • Scott J. Garforth
  • Catherine Vilchèze
  • William R. Jacobs
چکیده

Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable alpha-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO(2). Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of beta-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with beta-oxidation (KOR-dependent), and one that functions in the absence of beta-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GarA is an essential regulator of metabolism in Mycobacterium tuberculosis.

Alpha-ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α-ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and o...

متن کامل

Genetic Evidence for Bacterial Chemolithoautotrophy Based on the Reductive Tricarboxylic Acid Cycle in Groundwater Systems

Geologically and chemically distinct aquifers were screened for the presence of two genes coding for key enzymes of the reverse tricarboxylic acid (rTCA) cycle in autotrophic bacteria, 2-oxoglutarate : ferredoxin oxidoreductase (oorA) and the beta subunit of ATP citrate lyase enzymes (aclB). From 42 samples investigated, aclB genes were detected in two and oorA genes in six samples retrieved fr...

متن کامل

Metabolic plasticity of central carbon metabolism protects mycobacteria.

Central carbon metabolism (CCM) that transforms carbon through glycolysis, gluconeogenesis, the pentose phosphate pathway, and the TCA pathway into energy is essential for the physiology of Mycobacterium tuberculosis (Mtb). In contrast to other pathogens, humans are the only known reservoir of Mtb, where it mainly resides in macrophages of the primary organ of infection, the lung. Growing evide...

متن کامل

Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle : Evidence for Partial Oxidative and Reductive Pathways during Dark Ammonium Assimilation.

Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH(4) (+) in the dark under anaerobic conditions. Addition of NH(4) (+) to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO(2) efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are cons...

متن کامل

IDH mutations in tumorigenesis and their potential role as novel therapeutic targets.

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Somatic mutations in genes encoding IDH1 and IDH2 were first identified in glioma and subsequently in acute myeloid leukemia and other solid tumors. These heterozygous point mutations occur at the arginine residue of the enzyme's active site and cause both loss of normal enzyme funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009